Efficient Belief Propagation for Utility Maximization and Repeated Inference

نویسندگان

  • Aniruddh Nath
  • Pedro M. Domingos
چکیده

Many problems require repeated inference on probabilistic graphical models, with different values for evidence variables or other changes. Examples of such problems include utility maximization, MAP inference, online and interactive inference, parameter and structure learning, and dynamic inference. Since small changes to the evidence typically only affect a small region of the network, repeatedly performing inference from scratch can be massively redundant. In this paper, we propose expanding frontier belief propagation (EFBP), an efficient approximate algorithm for probabilistic inference with incremental changes to the evidence (or model). EFBP is an extension of loopy belief propagation (BP) where each run of inference reuses results from the previous ones, instead of starting from scratch with the new evidence; messages are only propagated in regions of the network affected by the changes. We provide theoretical guarantees bounding the difference in beliefs generated by EFBP and standard BP, and apply EFBP to the problem of expected utility maximization in influence diagrams. Experiments on viral marketing and combinatorial auction problems show that EFBP can converge much faster than BP without significantly affecting the quality of the solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning and Exploiting Relational Structure for Efficient Inference

Learning and Exploiting Relational Structure for Efficient Inference Aniruddh Nath Chair of the Supervisory Committee: Professor Pedro Domingos Computer Science & Engineering One of the central challenges of statistical relational learning is the tradeoff between expressiveness and computational tractability. Representations such as Markov logic can capture rich joint probabilistic models over ...

متن کامل

Approximate Expectation Maximization

We discuss the integration of the expectation-maximization (EM) algorithm for maximum likelihood learning of Bayesian networks with belief propagation algorithms for approximate inference. Specifically we propose to combine the outer-loop step of convergent belief propagation algorithms with the M-step of the EM algorithm. This then yields an approximate EM algorithm that is essentially still d...

متن کامل

Advances in Algorithms for Inference and Learning in Complex Probability Models

Computer vision is currently one of the most exciting areas of artificial intelligence research, largely because it has recently become possible to record, store and process large amounts of visual data. Impressive results have been obtained by applying discriminative techniques in an ad hoc fashion to large amounts of data, e.g., using support vector machines for detecting face patterns in ima...

متن کامل

Advances in Algorithms for Inference and Learning in Complex Probability Models for Vision

Computer vision is currently one of the most exciting areas of artificial intelligence research, largely because it has recently become possible to record, store and process large amounts of visual data. While impressive achievements have been made in pattern classification problems such as handwritten character recognition and face detection, it is even more exciting that researchers may be on...

متن کامل

Message passing with l1 penalized KL minimization

Bayesian inference is often hampered by large computational expense. As a generalization of belief propagation (BP), expectation propagation (EP) approximates exact Bayesian computation with efficient message passing updates. However, when an approximation family used by EP is far from exact posterior distributions, message passing may lead to poor approximation quality and suffer from divergen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010